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ABSTRACT

Data clouds in general, and cloud data warehouses (CDWs) in partic-

ular, have lowered the upfront expertise and infrastructure barriers,

making it easy for a wider range of users to query large and diverse

sources of data. This has mademodern data pipelines more complex,

harder to optimize, and therefore less resource e�cient. As a result,

the ongoing cost of data clouds can easily become prohibitively

expensive. Further, since CDWs are general-purpose solutions that

must serve a wide range of workloads, their out-of-box performance

is sub-optimal for any single workload. Data teams therefore spend

signi�cant e�ort manually optimizing their queries and cloud in-

frastructure to curb costs while achieving reasonable performance.

Aside from the opportunity cost of diverting data teams from busi-

ness goals, manual optimization of millions of constantly changing

queries is simply daunting.

To the best of our knowledge, Keebo’s Warehouse Optimization

is the �rst fully-automated solution capable of making real-time

optimization decisions that minimize the CDWs’ overall cost while

meeting the users’ performance goals. Keebo learns from how users
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and applications interact with their CDW and uses its trained mod-

els to automatically optimize the warehouse settings, adjusts its

resources (e.g., compute, memory), scale it up or down, suspend or

resume it, and also self-correct in real-time based on the impact of

its own actions.
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1 INTRODUCTION

Data clouds. Data clouds have radically changed how modern

data applications are built, deployed and used. In particular, cloud

data warehouse (CDW) o�erings, such as Google’s BigQuery [35],

Amazon Redshift [23], Snow�ake [22], and Azure Synapse [42],

have signi�cantly lowered the barrier in terms of the expertise and

the upfront infrastructure investments required to develop data-

intensive applications. In other words, a much wider range of users

and applications to tap into data. Modern applications can now

query larger data-sets combining a larger number of data sources,

without worrying about the challenges of storing and processing

volumes of data. With CDWs, compute and storage resources can

be scaled up and down on demand, automating much of the manual

work traditionally done by experienced data engineering and data

ops teams (e.g., hardware provisioning, scaling, software updates,

index and view creation). This evolution has fueled much of the

rapid market growth. For example, the CDW market is expected

to reach $39B by 2026, with a 31% compound annual growth rate

during 2021-2026. The overall market for big data and business

analytics is also expected to reach $152B by 2026 [40].

New challenges.Nonetheless, this lower barrier to entry—i.e., elim-

ination of the upfront capital expenses (CapEx)—has had other con-

sequences. The ease of sharing and querying various data sources,

and simpli�ed access to virtually unlimited compute resources, have

led to new challenges. Most notably, modern data pipelines have

become far more complex, harder to optimize, and therefore less

resource e�cient. For example, 20% of the companies in a recent

survey use 1000 or more data sources [33], and data teams spend

56% of their time on DataOps according to another survey [3]. The

additional complexity and the resulting computational ine�cien-

cies have drastically increased the operational expenses (OpEx)

for customers of data clouds in two ways. First, they now spend

more on their cloud computing bill (i.e., infrastructure costs) [1, 41].

Second, their data teams now have to spend signi�cant e�ort on

manually optimizing their data pipelines, applications, and queries

in order to maintain acceptable performance while keeping their

cloud bill within budget. These manual optimizations have a direct

cost, as quali�ed data engineers are scarce and costly. There is also

an indirect (opportunity) cost, as data teams are distracted from

their mission of improving their own business through data to oper-

ating and tuning their data infrastructure. In summary, while data

clouds have drastically reduced the upfront (CapEx) barrier, they

have increased the ongoing (OpEx) barrier for their customers.

Need for constant and complex optimizations. The fundamen-

tal reason why CDWs still require signi�cant tuning and man-

ual optimizations by users is that CDWs are designed as general-

purpose solutions that need to serve a wide range of use cases

and workloads, such as ETL, adhoc analytics, reporting, Business

Intelligence (BI), and even custom applications. As a result, their

out-of-box experience is by de�nition sub-optimal for any single

workload. Even the same type of workload di�ers vastly from one

customer to another, and even between di�erent warehouses of the

same customer. In fact, new patterns continuously emerge as new

applications or industries migrate to data clouds. Business needs

and requirements constantly change over time too. For instance, a

company in growth mode may prioritize performance and time-to-

insight over infrastructure costs. However, the same company may

focus on reducing costs when faced with a recession or economic

downturn. To accommodate their wide range of users, each CDW

exposes a certain number of knobs to its customers. For example,

Snow�ake expects the users to decide on the size and number of

their virtual warehouses, clustering keys, and other parameters;

Azure Synapse expects them to select compute pool sizes; Amazon

Redshift expects users to decide on cluster size, node type, and

Redshift Processing Units (Redshift Serverless). However, making

optimal decisions for millions of daily queries that are issued at

di�erent times and by di�erent teams and applications is a daunting

task for a typical clouds user. Even when manual optimizations are

possible, they have to be constantly redone since cloud workloads

constantly change.

Keebo’s vision. Our goal at Keebo is to make data clouds smarter

with a concept we call data learning. That is, we learn from how

users and applications interact with their data in the cloud and

use our trained models to automate the tedious aspects of those

interactions [7]. Examples of such tedious tasks include optimizing

individual queries, accelerating BI dashboards, reducing the cloud

bill, discovering data quality issues, detecting changes to the under-

lying data distribution, identifying the most likely causes driving

a KPI change, and even enforcing data compliance rules. Keebo

is a data learning platform comprised of a number of individual

modules that each automate one of these tedious tasks for users of

data clouds. For instance, one of Keebo’s most popular modules is

its Warehouse Optimization that automatically optimizes the cus-

tomer’s cloud data warehouses to ensure best performance while

minimizing the overall cost. Likewise, Keebo’s Query Acceleration

module automatically optimizes queries to speed up BI dashboards

without any manual e�orts needed from the user [24]. In this paper,

we will introduce Keebo’s Warehouse Optimization, and defer our

Query Acceleration to a companion paper. (The rest of the o�erings

are not generally available yet.)

Fully-automated warehouse optimization. Unlike traditional

query optimization, which optimizes one query at a time, our goal is

to optimize the entire warehouse based on (i) all the queries in the

workload and (ii) the customer’s cost and performance objectives.

We refer to this problem as warehouse optimization, whereby the

corresponding warehouse optimizer can be deployed and scaled

independently, thus �tting nicely in the data cloud architecture. De-

pending on the particular warehouse product at hand, warehouse

optimization decisions may include tuning the warehouse knobs,

provisioning its resources (e.g., compute, memory), scaling it up or

down, scaling it in or out, suspending or resuming 1 it, consolidating

multiple warehouses into one, and load balancing decisions. While

there have been numerous recommendation tools and tuning advi-

sors for database administrators (DBAs) [16, 17, 20, 21, 48], to the

best of our knowledge, Keebo’s Warehouse Optimization (KWO) is

the �rst fully-automated warehouse optimizer on the market. That

is, users only need to specify their performance and cost require-

ments and Keebo automatically handles the rest. For example, KWO

1Some CDWs, such as Snow�ake and Azure Synapse, allow customers to suspend
their warehouses that are not used temporarily in order to reduce costs.
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makes and applies automated decisions in real-time that minimize

the overall compute bill while ensuring the customer’s performance

goals.

Architecture and work�ow. Figure 1 shows our architecture.

Keebo is comprised of several modules and components. The cus-

tomer’s admin speci�es their desired cost and performance require-

ments through Keebo’s web portal. The data learning (DL) platform

continuously reads the telemetry metadata from the customer’s

CDW to train domain-speci�c smart models for each module (i.e.,

Warehouse Optimization, Query Acceleration, etc.). Here, we fo-

cus on Keebo’s Warehouse Optimization (KWO) module. The DL

platform trains a separate warehouse optimization model per each

of the customer’s warehouses to meet the unique performance re-

quirements for the workloads observed on each warehouse. The

smart models make real-time decisions, called actions, for each of

the customer’s warehouses, by taking four inputs into account: (1)

the historical knowledge learned during the training phase, such

as recurring patterns or query signatures and the impact of pre-

vious optimizations on their performance, (2) the warehouse cost

model, which predicts the impact of each decision on cost and per-

formance, (3) the customer constraints, which are a set of rules

stating business requirements, such as ‘prioritize performance over

cost saving for this particular warehouse’ or ‘avoid downsizing

between 9am to 9:30am’, and (4) the real-time feedback from the

monitoring component, such as increased latencies, new query pat-

tern, queuing, or sudden spikes in the load. The smart models never

take actions that violate the customer constraints. They rely on

historical data to decide their optimization actions but they also

back o� and self-correct based on the real-time feedback they re-

ceive from the monitoring module. The actions are translated into

the CDW vendor’s own API and executed by the actuator. KWO

o�ers a value-based pricing, which relies on the warehouse cost

model to estimate the monetary savings brought to the customer

as a direct result of KWO’s own optimizations. The customer is

charged a percentage of the actual savings. The customer can also

inspect various cost and performance KPIs through the dashboards

in the web portal.

Keebo’s models constantly learn and improve with more usage.

Depending on their workload, customers observe 20%–70% savings

(i.e., reduction of their CDW bill). On average, customers reach

50%, 70%, and 95% of their eventual savings after only 20, 43, and

83 hours of onboarding, respectively.

To summarize, we make the following core contributions:

(1) We introduce a Data Learning approach to warehouse opti-

mization, which—to the best of our knowledge—is the �rst

fully-automated solution for optimizing cloud data warehous-

ing and reducing costs.

(2) We present a value-based pricing strategy based on a novel

warehouse cost model that quanti�es the direct impact of var-

ious warehouse optimizations on the billable cost of a CDW.

(§5)

(3) We present a detailed architecture for incorporating real-time

performance feedback using deep reinforcement learning. (§6)

(4) We report empirical results on production workloads. (§7)

The rest of this paper is organized as follows. In §2, we present

our design criteria and challenges. In §3, we provide an overview

of various optimization decisions, followed by a description of our

user �ow and end-to-end architecture in §4. We introduce our novel

warehouse cost model in §5, and our Deep Reinforcement Learning

framework in §6. Finally, we present empirical results in §7 and

overview the related work in §8.

2 DESIGN CRITERIA AND CHALLENGES

Below we present the main criteria and goals that have guided our

design decisions (C1–C6).

C1. Zero barrier to adoption. One of KWO’s overarching design

goals is that it must not come with any downsides for the customer.

In other words, to ensure fast, easy, andwide adoption, the customer

should have nothing to lose in trying or buying KWO. This criterion

has guided many of our other design choices: minimal on-boarding

e�ort, little or no ongoing maintenance from customer, zero access

to customer data, no slowdowns of customer’s workload by default,

value-based pricing (no savings, no charges), remaining transparent

to users and applications, and the ability to accommodate various

use cases and scenarios for arbitrary workloads.

C2. Ability to express customer’s requirements. Data clouds

serve awide range of customers, from cost-conscious to performance-

sensitive ones, from small data teams to large enterprises with tens

of disparate teams. Even within the same organization, every appli-

cation, workload and data warehouse has a di�erent set of business

requirements. A slowdown of an ETL job might cause SLA viola-

tions and immediate failure of upstream applications. Similarly, a

slow BI dashboard can lead to user complaints, while a reporting

application may be able to tolerate slightly longer query latencies.

Therefore, one of our design goals is to allow customers to specify

their business requirements. For example, a customer must be able

to specify how aggressively or conservatively they want each of

their warehouses to be optimized. As another example, they should

be able to prevent KWO from downsizing their BI warehouse dur-

ing mission-critical hours (e.g., Mondays 9-10am) or even request a

larger warehouse during certain times of the day, week, or month.

C3. Fully autonomous. There have been numerous recommen-

dation tools, whereby a set of suggestions are made to the DBA in

terms of indexes, knobs values, settings, or other actions [16, 18, 21,

28, 29]. These tools have had limited adoption in the past, but are

even less applicable to modern data clouds. Many customers are

running millions of queries with signi�cant �uctuations through-

out the day. As a result, no static value will be optimal due to the

unpredictable and time-varying nature of modern workloads. No

data team will have su�cient engineering resources to continu-

ously monitor their data cloud and manually apply performance

recommendations throughout the day. Further, if the DBA could

determine whether a particular recommendation provided by the

tool will be e�ective, he or she would not need a recommendation

tool in the �rst place. Often, given the sheer volume of queries and

the ever-changing nature of cloud use cases, it is humanly impossi-

ble to determine an optimal course of action. One of design goals

therefore is to ensure that KWO is fully-automated, i.e., rather than

providing recommendations it can perform the optimal actions in

real-time, learn and adjust on its own. That is, while the admin can
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Figure 1: Keebo’s architecture.

intervene or perform manual action, the product should have the

capability to be fully autonomous.

C4. Prioritizing performance over savings. In some cases, im-

proving performance may reduce costs too. For instance, if doubling

the warehouse doubles the hourly rate but allows the jobs to �n-

ish in one hour instead of three hours (e.g., by allowing the entire

data to �t in memory), then the overall cost and performance have

both improved. In other cases, there may be a trade-o� between

cost and performance. While KWO must allow users to make such

tradeo�s (see C2), it must never prioritize cost over performance

without customer’s explicit request. In other words, when faced

with a choice of saving costs with a moderate slowdown versus less

(or no) savings but no slowdown, KWO’s default behavior must

be the latter. The reason is that most customers are less forgiving

of performance slowdowns and user complaints than they are of

lower savings, i.e., savings are always welcome even if modest.

C5.Workload agnostic. KWOmust not make any a priori assump-

tions about the customer’s workload. Even for the same customer,

each warehouse might be drastically di�erent. A warehouse serv-

ing an ETL workload might have a highly-recurring query pattern,

while a warehouse serving data analysts might be serving ah-hoc

queries with signi�cantly larger load near the month end. In fact,

the main reason the out-of-box performance of data clouds is not

optimal for most customers is the general-purpose design of CDWs.

In many cases, CDWs face hybrid or even homegrown and highly

custom applications at each customer that they have not observed

from other customers. Therefore, KWO must train a new smart

model from scratch for each of the customer’s warehouse based on

the workload at hand.

C6. Security. Data warehouses are home to the most valuable dig-

ital assets of the company. As such, security concerns and scrutiny

are heightened for products that access the customer’s data ware-

house. While access to query text and customer data is essential for

Keebo’s Query Acceleration, KWO must not store or even access

any customer data. Speci�cally, KWO must train its smart mod-

els only using telemetry and performance metadata. Even query

texts and usernames that are often present in performance must

be securely hashed to ensure personally identi�able data are never

leaked to KWO. This is critical to removing security concerns in

adopting KWO (see C1).

3 OVERVIEW AND SCOPE

In this section, we provide a brief overview of various warehouse

optimization actions that one can take. While each CDW vendor ex-

poses a di�erent set of knobs and levers, here we focus on Snow�ake

as one of the most popular CDW products on the market given

it is also the most popular CDW among Keebo’s customers. We

defer warehouse optimization of Google’s BigQuery to a separate

paper. Even Snow�ake itself o�ers a variety of warehouse opti-

mization opportunities. However, due to space constraints, in this

paper we limit our discussion to three main types of warehouse

optimizations.

Memory optimization. Snow�ake is capable of automatically sus-

pending a warehouse when it is idle for a set period of time (a.k.a.

auto-suspend interval) and resuming it automatically when the next

query arrives [8]. Since Snow�ake charges customers based on the

number of minutes the warehouse is running, this feature frees cus-

tomers from having to manually manage their warehouse schedule

according to their query arrival times. However, the customer still

has to choose a static value for their auto-suspend interval. Setting

a small auto-suspend interval has drawbacks. This is because each

time a warehouse is suspended, its local memory cache is dropped,

causing future queries to read data from cold storage when the

warehouse is resumed. Depending on the workload, this may have

a dramatic impact on query latencies and thereby the total time the

warehouse is running, which itself increases the overall cost. For

example, queries in BI workloads tend to access similar data and

therefore are more cache-sensitive. Frequent warehouse suspension

and dropping of the cache, will impair the user experience but will

also increase the execution time and the warehouse usage. Like-

wise, setting a large auto-suspend interval will also increase cost by

causing the customer to pay for the idle warehouse time. There are

several rules of thumb for setting the auto-suspend interval [2], but

all of them require the customer to continuously monitor the work-

load and analyze the impact of losing the cache versus keeping the
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warehouse running. These rules of thumb provide no guarantees

on optimal cost or performance.

Warehouse resizing. Snow�ake requires users to select a size

when creating a warehouse. The warehouse sizes come in abstract

“T-shirt sizes” – X-Small, Small, Medium, Large to 6X-Large [14].

The costs double with each larger size, e.g., Small costs twice the

X-Small, Medium costs twice the Small, and so on. The available

compute resources for each size are not publicly documented due to

di�erences in provisioning among cloud providers, but the compute

capacity is widely assumed to also double with each increment in

warehouse size [4]. Aside from a beta feature, Snow�ake’s generally

available product does not o�er any option to scale up or scale down

the warehouse sizes automatically. However, the customer has the

option to resize the warehouse manually. Snow�ake recommends

customers choose their warehouse size according to the complexity

of their query workload [12]. Unfortunately, it is hard for customers

to estimate the optimal resources for their queries. Instead, most

customers resort to a crude strategy whereby they experiment

with di�erent warehouse sizes to �nd one that o�ers reasonable

performance for their peak load. Since the load and queries vary

throughout the day, a �xed size is almost never optimal. Unfortu-

nately, even these crude experiments are only done occasionally

(e.g., at provisioning time), and thus the selected warehouse can

become even less e�ective as the workload evolves. Repeating these

experiments frequntly is too tedious for most customers.

Warehouse parallelism. By default, Snow�ake creates a single

cluster for each warehouse. Each cluster can run multiple queries.

However, if su�cient resources are unavailable on the cluster, the

queries are queued till the resources become available. To reduce

queuing delays, Snow�ake o�ers a scale out capability called amulti-

cluster warehouse [11], whereby new clusters are created on de-

mand to provide additional resources. In multi-cluster warehouses,

Snow�ake can automatically add/remove clusters in response to

changes in the workload. The clusters can increase up to the maxi-

mum cluster count speci�ed by the customer. The Snow�ake sched-

uler considers the queue sizes and available resources on the exist-

ing clusters before scaling out to the maximum cluster count.

Snow�ake o�ers two dynamic scale-out policies—Standard and

Economy [13]. The Standard policy prevents queuing by aggres-

sively scaling out, while the Economy policy reduces cost by keep-

ing the clusters fully occupied. Customers can also choose a static

Maximized mode, where the minimum and the maximum number

of clusters are equal, causing the warehouse to start and keep all

the clusters concurrently. The Maximized mode can be an option

for customers with non-�uctuating workloads or zero tolerance for

cluster startup delays. Note that all clusters in a multi-cluster ware-

house are of the same size. That is, a warehouse resize operation

a�ects all the clusters in the warehouse. Customers can manually

scale up via resizing and scale out via multi-cluster warehouse

simultaneously, which increases the complexity of �nding the opti-

mal warehouse resource con�guration for customer’s workload.

4 END-TO-END ARCHITECTURE

KWO is a fully managed SaaS product that plugs into existing

CDW infrastructure. That is, customers do not need to install or

deploy any software. They can continue using their data clouds

as before, while the managed service automatically identi�es and

performs warehouse optimizations in the background. Once con-

nected, Keebo covers the entire optimization life-cycle of the data

warehouse, from observing the workload, learning smart models,

applying optimization decisions, monitoring the performance im-

pact of those decisions, adjusting or reverting the optimizations

in case of an adverse impact, and reporting the overall bene�ts

to users. Figure 1 shows the architecture of Keebo’s warehouse

optimization. Next, we describe each component.

4.1 User Interface

KWO o�ers an API service for programmatic access as well as a

web interface. The majority of uses and applications using the CDW

do not need to interact with or even be aware of Keebo. Only the

customer’s admins need to access Keebo to con�gure and monitor

the service. The web portal is shared among Keebo’s di�erent ap-

plications (Warehouse Optimization, Query Acceleration, etc.), as

customers may sign up for multiple applications. Here, we focus

on the user interface for KWO, which o�ers three main functions:

(i) performance dashboards (ii) sliders, and (iii) constraints.

Dashboards. The dashboards o�er a comprehensive view of vari-

ous KPIs, with the ability to �lter by time and warehouse name, or

aggregate daily, weekly or monthly. The KPIs include metrics such

as the CDW spend, the savings brought by KWO, query latency

and queue times (both average and 99th percentile), and cost per

query. KWO also o�ers full visibility to customers by visualizing

the real-time actions taken on each warehouse. Figure 2 (b)–(c)

show screenshots of daily cost savings and query latencies.

Sliders.KWOprovides a single slider per eachwarehouse, as shown

in Figure 2 (a), with �ve positions ranging from “Best Performance”

to “Lowest Cost”. These positions allow the customer to decide its

desired trade-o� between performance and cost for that particu-

lar warehouse. That is, through this slider the customer controls

whether KWO should lean towards cutting costs (i.e., be more ag-

gressive) or preserving performance (i.e., be more conservative).

By default, the sliders are in “Balanced” position, which means

KWO will aim to only apply optimizations that cut cost without

degrading performance. If the customer is willing to accept a small

degradation of performance, they can move the slider to “Low Cost”.

Similarly, if the customer wants to further reduce the chances of

any slowdown, say by provisioning for sudden spikes in usage, they

can move the slider to “Good Performance” position. This customer

is in charge of the slider position because only they know how

mission critical each workload is.

KWOperforms di�erent optimizations (see §3) that often interact

and compete with one another in complex and non-linear ways. For

example, the impact of downsizing a warehouse depends heavily

on the extent to which we also reduce the degree of parallelism

(e.g., number of clusters). A salient feature of KWO is that, instead

of forcing customers to reason and worry about the impact of each

optimization independently, they can simply use a single slider to

express their high-level trade-o� and rely on KWO to translate that

into speci�c guidelines for each type of optimization underneath.

In other words, KWO simpli�es the tuning of the aggressiveness
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for various optimizations by unifying them into a single slider, and

mapping it internally to various hyper-parameters of the learning

algorithm that can deliver the customer’s cost-performance trade-

o�.

Constraints. KWO’s interface allows admins to also express their

hard constraints through de�ning rules. Although KWO automat-

ically adjusts its optimizations dynamically based on real-time

changes of the workload and based on the trade-o� slider, cus-

tomers can also de�ne additional rules for a more deterministic

behavior. In each rule, the customers can disallow or allow certain

optimizations or enforce certain resources during certain hours of

the day or days of the week for each warehouse. For example, a rule

may state that from 9am to 9:30am the BI warehouse must change

from Large to X-Large with a minimum of 3 clusters, or that on last

day of the month the warehouse used for adhoc analytics cannot

be downsized even if underutilized, but KWO may still adjust its

degree of concurrency. KWO’s automated optimizations always

respect the customer provided rules, treating them as hard business

constraints. Figure 3 shows a screenshot of an example constraint.

4.2 Data Learning

The core of Keebo’s architecture is its data learning platform, which

continuously trains domain-speci�c smart models for each appli-

cation (Warehouse Optimization, Query Acceleration, etc.) based

on how users and applications interact with the underlying data.

Since our focus in this paper is KWO, here we only discuss how our

data learning platform trains smart models for warehouse optimiza-

tion. In this case, the training data is the performance telemetry

metadata provided by the CDW, such as the number of queries,

their arrival, queuing, and completion time, the number of bytes

they each scanned, etc. In §6.1, we provide a detailed description

of the metadata that we use for training KWO’s smart models. In-

stead of training a single smart model per customer, we train a

separate warehouse optimization model for each of the customer’s

warehouses in order to meet the unique performance requirements

of the di�erent workload observed on each warehouse. In §6, the

algorithmic aspect of our data learning platform in more details.

The most notable aspect of our data learning is that it generates

models that continuously improve over time, i.e., deliver better

performance and higher savings. This is because they constantly

(i) train on additional data, and (ii) learn from how the past ac-

tions impacted cost and performance and thus auto correct. As a

fully-managed service, the data learning process is completely auto-

mated and transparent to users. Moreover, for privacy and security

reasons, the smart models trained based on a customer’s metadata

are never shared or used for other customers.

4.3 Smart Models

Each of the customer’s warehouses is assigned a unique smart

model,2 which makes real-time decisions, called actions, for that

particular warehouses. The smart models have been trained on past

performance telemetry metadata during the training phase. Thus,

2We use the term ‘smart model’ to di�erentiate it from traditional models: as our
algorithms consult other components at run-time (e.g., cost model and constraints)
rather than blindly applying the actions suggested by the original model that was
trained o�ine.

they’re aware of the past workload running on their corresponding

warehouse. For example, the models capture whether the workload

exhibits a recurring load during certain times or days, or if the

queries in the workload share a similar pattern. If the workload is

highly unpredictable, the models capture that too, i.e., the models

are aware of their own con�dence in predicting future workload. In

the addition to the historical behavior, the smart models take three

additional inputs into account when deciding on their next actions:

(1) the cost model, which predicts the impact of each decision on

cost and performance (§4.6,

(2) the customer constraints and slider trade-o�, which specify the

business requirements (§4.1), and

(3) the real-time feedback from the monitoring component, such

as increased latencies, new query pattern, queuing, or sudden

spikes in the load (§4.4).

The smart model may adjust its action based on the latest slider

position. For example, if the customer changes their slider posi-

tion from ‘Balanced’ to ‘Good Performance’, there is no need for

retraining the smart model from scratch. Instead, the smart model

can re-calibrate its decisions automatically. However, the smart

model never takes actions that violate the customer constraints. For

example, if the customer has recently banned downsizing during

a time-window, non-compliant actions are cancelled and replaced

with the next best action that complies with the latest constraints.

Finally, depending on the real-time feedback, the smart model may

back o� and rolls back the previous settings of the warehouse. For

example, if the monitoring data indicates a sudden spike in the

load or additional queuing in the warehouse, the smart model will

immediately self correct and resort to a more conservative action.

The �nal action is sent to the actuator, which we describe in §4.5.

4.4 Monitoring

KWO continuously monitors the customer’s warehouses for three

reasons. First, it monitors performance-related metrics ( such as

query latency and queue times, queue sizes, etc.) in real-time to

assess the impact of its own actions and provide feedback to the

smart models so they can self-correct and adjust their next actions

accordingly (Algorithm 1, lines 18–19). Second, since models have

been trained on past telemetry data, it monitors for sudden spikes

and changes in the workload to back o� from previous actions if

needed. Finally, it monitors whether external applications have

made any modi�cations to existing warehouses. Particularly in

larger organizations, it is always possible that users may directly

interface with the CDW and make modi�cations that con�ict with

KWO’s actions. For example, KWO may decide that downsizing a

warehouse but increasing its cluster count will lead to cost savings

without negatively impacting performance. However, if another

user simultaneously decides to reduce the cluster count, the end

result can be devastating for performance. Therefore, as soon as

KWO detects external changes made to a warehouse, it immediately

reverts its own action and only resumes its optimizations when-

ever (i) the external changes have been undone, or (ii) the admin

explicitly asks the optimizations to continue.
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(a) Sliders (b) Performance: Savings (c) Performance: Latencies

Figure 2: Keebo’s web interface: settings and performance dashboards.

Figure 3: Example of a business constraint rule.

4.5 Actuator

The actuator is responsible for translating the actions decided by

the smart model into the API of the underlying CDW and execute

them. The actuator therefore serves as a layer of abstraction be-

tween Keebo and the underlying CDW, hiding the vendor-speci�c

implementation details from the smart models. It keeps a record of

all actions taken and reports any errors it encounters. In the spe-

ci�c case of Snow�ake, most actions turn into ALTER WAREHOUSE

commands. For example, the following query changes a warehouse

called “COMPUTE_WH” to Medium size:

ALTER WAREHOUSE COMPUTE_WH

SET WAREHOUSE_SIZE=MEDIUM;

4.6 Warehouse Cost Model

KWO relies on a warehouse cost model to estimate the savings

realized by customers as a result of KWO’s direct actions and op-

timizations. To achieve this goal, the cost model has to estimate

the billable cost of the CDW with and without Keebo’s warehouse

optimizations. This is in contrast to traditional cost models, which

aim to produce an abstract number for comparing pairs of query

plans. Our warehouse cost model allows the smart models to make

informed decisions when deciding their next action (see §4.3). It

also allows KWO to be o�ered with value-based pricing, which we

discuss next. We present our cost model in more details in §5.

4.7 Value-based Pricing

As a fully managed warehouse optimization service, KWO is priced

based on the value it produces. That is, customers are charged

a percentage of the actual savings realized as a direct result of

KWO’s actions. The customer can also inspect various cost and

performance KPIs through the dashboards in the web-portal.

With a value-based pricing, there is no lock-in or upfront cost.

Instead, customers only pay for the value already delivered to them.

This pay-as-you-save model aligns nicely with the pay-as-you-go

model o�ered by most data clouds. As previously mentioned, we

rely on our warehouse cost model to estimate the overall CDW

costs had the customer not had KWO in place.

5 WAREHOUSE COST MODEL

Goal. The goal of Keebo’s warehouse cost model is to estimate

the billable cost of the warehouse with and without Keebo’s ware-

house optimizations, and thereby estimate the savings resulted

from Keebo’s actions brought to the customer. This is important

for two reasons. First, it allows KWO’s smart model to make more

informed decisions when deciding its next action (see §4.3). Second,

it helps customer view the quantitative impact of KWO on reducing

their overall CDW bill, which can then be used for a value-based

pricing (see §4.7). For example, assume KWO performs a certain

number of optimizations between 9am and 10am. The customer

can later see the bill from their CDW vendor for that hour, but they

will not know how much they would have paid had they not have

Keebo’s optimizations in place. That is, the customer would not

know if KWO reduced or increased their spend (and if so, by how

much) simply from their CDW bill. To solve this problem and o�er

assurance and visibility to the customer, Keebo’s warehouse cost

model uses a what-if analysis to estimate what the cost would have

been had KWO had not performed its optimizations.

Before presenting how our warehouse cost model works, it is

worth noting how our proposed warehouse cost model di�ers from

(and is more challenging to develop than) cost models used in

traditional query optimization.

Di�erences from traditional cost models. Unlike traditional

query optimization cost models that produce an abstract metric
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which could only be used for comparing two plans, the warehouse

optimization cost model directly estimates the billable cost incurred

by the CDW (e.g., credits for Snow�ake, bytes scanned for BigQuery,

and hours of usage for Azure Synapse). While developing a cost

model is always challenging, developing a warehouse cost model is

even more so for a number of reasons.

First, the warehouse cost model must estimate the cost of the

entire warehouse, rather than the cost of each individual query.

Instead, we need to capture all the application and user interactions

using the warehouse (e.g., query arrival and completion times,

periods of no activity, etc.) and compute an aggregated measure.

Second, the warehouse cost model must estimate the cost of the

warehouse using absolute values that map directly to the dollar

amount billed by the CDW vendor. For example, for Snow�ake,

estimating the number of credits consumed by a warehouse can be

mapped to a dollar amount based on Snow�ake’s cost per credit

negotiated by the customer. This is in contrast to traditional cost

models that emit abstract and unitless metrics, which do have any

meaning and can only be used for comparing various query plans.

Third, instead of comparing query plans, the warehouse cost

model is used to compare the optimized warehouse state with

its original state. We refer to these two states as with-Keebo and

without-Keebo, respectively. Thus, unlike traditional cost models

that rely on a compile-time search, our warehouse cost model relies

on ‘what-if’ analysis. That is, it measures how far the cost of the

with-Keebo state is from that of the without-Keebo one, and emits

the di�erence as cost savings presented to the customer. This also

means the warehouse cost model has to be more accurate than

trantional cost models, particularly when used as a basis for pricing

(see §4.7).

Our approach. Our approach to overcoming these challenges is to

combine analytical and machine learning models. Our analytical

models capture the underlying CDW’s behavior at the �ne-grained

query level using certain parameters, while our machine learning

models calibrate and estimate those parameters based on macro

trends in the customer’s own historical data. The advantages of

using this hybrid learning approach are that (i) it gracefully adapts

to the workload at hand, (ii) it is robust against both micro and

macro trends, (iii) it is easily extensible to new CDW products, and

(iv) it constantly improves over time as it observes more data.

We next describe the two major components of our warehouse

cost model: analytical query replay (that captures per-query system

behavior) and machine learning-based parameter estimation.

5.1 Query Replay

The �rst step in our warehouse cost estimation is to run a what-if

analysis by conceptually replaying the queries in the workload and

estimating the without-Keebo costs, i.e., if none of the currently

applied warehouse optimizations were in place. In most cases, how-

ever, the with-Keebo cost need not be estimated as it can be directly

obtained from the CDW’s billing data for the period that KWO was

actively optimizing the customer’s warehouse. The di�erence be-

tween the estimated without-Keebo cost and the actual with-Keebo

cost is KWO’s cost saving delivered to the customer.

Using Snow�ake as our running example, since they bill hourly

for per-second usage in that hour, our query replay iterates over

all queries run during each hour and computes the number of

seconds the warehouse was active in that hour. To compute the

active seconds, the query replay considers periods of time in which

at least one query was running, inclusive of idle times (such as

warehouse startup, shutdown) and the auto-suspend interval before

an idle warehouse starts to shutdown. For multi-cluster warehouses,

the query replay also considers how many clusters would be active

at each point in time and multiplies the active seconds accordingly.

The query replay also considers the warehouse’s original cluster

scaling policy3 that was in e�ect at that time to estimate how

soon new clusters would have been added or removed had Keebo’s

optimizations not been in place.

At each step during the replay, we consider the customer’s origi-

nal settings without any of Keebo’s warehouse optimizations. For

example, for any period that KWO has changed the warehouse size,

we consider the warehouse’s original size (and hence hourly rate)

for estimating the without-Keebo cost. Likewise, if Keebo suspends

a warehouse sooner than the customer’s original auto-suspend pe-

riod, we use the the latter, and so on. Finally, we multiply the total

active seconds by the hourly rate of the original warehouse size to

estimate the without-Keebo cost.

The query replay grounds our cost estimation into the actual

query processing and billing behavior of the underlying warehouse,

thereby scaling gracefully as workloads change over time. For in-

stance, if there is a sudden drop in the number of queries then

the estimated without-Keebo cost will also adjust automatically.

Likewise, di�erent scaling policies or new warehouse optimizations

can be incorporated into the query replay. Overall, query replay

prevents our cost model from being a black box; rather it makes

cost and saving estimates more explainable and transparent to the

customer.

5.2 Parameter Estimation

The query replay simulates how each query would have behaved

in the absence of Keebo’s optimizations. However, in doing so, it

requires certain parameters that may vary for di�erent workloads

and warehouses. Next, we discuss how we use machine learning

models to estimate these parameters from historical data for the

warehouse at hand.

Impact on query latencies. The query latency often varies with

the warehouse resources, and therefore the same query may ex-

hibit di�erent latencies when run on di�erent warehouse sizes. For

example, if KWO changes the size of a warehouse, we cannot later

assume the queries would have had the same latency had Keebo

not changed the size. To estimate the impact of warehouse size

on query latencies, we train a regression model to scale query la-

tencies across warehouse sizes. Fortunately, since KWO changes

warehouse sizes dynamically, it is likely to �nd identical or at least

similar queries4 run on di�erent warehouse sizes over time. In situ-

ations where we do not �nd similar queries in the past, we use the

average impact on query latencies observed on that warehouse as

3For example, Snow�ake customers choose between standard and economy policies.
4Note that KWO does not have access to plain query texts for security reasons (Sec-
tion 2). Thus, we use the hash value of the query text and the hash value of the query
template (i.e., query text stripped of all constants) to �nd identical and similar queries,
respectively.
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a �rst-order approximation. We use all such past observations as

training data. Then, during query replay, we scale the execution

time of each query according to the historical behavior we have

observed for that query using our regression model.

It is worth noting that halving a warehouse size may or may not

reduce cost. This is because the latency may grow super-linearly for

some queries, but linearly or sub-linearly for others. For example,

in the extreme case, if all queries more than double in latency, then

the downsizing will indeed increase the overall costs. However, in

general, for usage-based CDWs such as Snow�ake, slowing down a

subset of the queries may not increase the overall cost, depending

on their arrival times. For example, one query’s execution period

may be subsumed within that of another query.

Impact on query arrival times. Impacting query latencies will

also impact the gap between their arrival times. For example, if

KWO had not increased the warehouse size, we might have had

longer query execution times, but also smaller gaps between subse-

quent queries if we assume their arrival times would remain the

same. These changes in query gaps, however, are arti�cial since in

practice queries either arrive independently at a given arrival rate

or they have dependencies that cause them to arrive at successive

or scheduled time periods. Regardless, the gaps between should not

change with warehouse optimization, even if the start and end time

of each query changes. To account for this, we model the query

gap intervals for each warehouse over time and use that model to

predict and adjust the gaps during query replay. This process also

accounts for the fact that query gaps cannot be longer than the

auto-suspend interval since the warehouse would have shut down

after that period of inactivity, causing the warehouse costs to stop

anyways.

Impact on warehouse parallelism. Finally, the arrival pattern

of queries will impact the number of clusters that would have

been spun up without Keebo’s optimizations. For example, if KWO

limited the maximum number of clusters to 4 while the original

value was 10, then the with-Keebo scenario could use between

1–4 clusters whereas the without-Keebo scenario could have used

anywhere between 1–10 clusters. We therefore need to predict the

number of clusters that would have been used at each point in

time in order to estimate the impact of KWO’s actions. We train

cluster-count predictor using the past performance statistics and

the original max cluster count. To avoid dealing with per-second

predictions, we batch the past query execution into mini-windows

and then predict the average cluster count for each mini-window.

Once we have the predicted number of concurrent clusters, we

scale the costs accordingly during the query replay.

Calibrating the parameters used during the query replay with

learning-based models makes our warehouse cost estimator re-

silient to simulation errors, yielding more accurate estimates (see

§7.2).

6 DATA LEARNING

6.1 Training Data

KWO relies on CDW’s performance telemetry to learn query and

usage patterns of each warehouse and use the resulting smart mod-

els to guide its optimizations. KWO only uses warehouse and query

Algorithm 1 Data Learning Algorithm

1: Input

2: aggr : The slider position (i.e., aggressiveness)

3: wh : warehouse name

4: WCM: warehouse cost model trained for wh

5: UC : user constraints

6: T : frequency of collecting detailed telemetry data

7: Trealtime : frequency of checking real-time performance

8: Initialization

9: D← ReadTelemetryData(last 90 days)

10: action[0]← null, reward[0]← null

11: i← i null

12: while true do

13: if T hours have elapsed since last training then

14: D← D
⋃

ReadTelemetryData(last T hours)

15: M← TrainSmartModel(D, wh, aggr, WCM)

16: end if

17: if Trealtime mins have elapsed since last action then

18: feedback[i-1]←Monitoring.RealTimeState()

19: action[i]←M.nextAction(UC, WCM, feedback[i-1])

20: Actuator.apply(wh, action[i])

21: i← i + 1

22: end if

23: savings← cm.estimateSavings(action[], feedback[])

24: report(action[], feedback[], savings)

25: end while

metadata information for training its models. For security reasons,

It does not use the text of the queries or the customer’s data used in

those queries. This metadata is fetched periodically (Algorithm 1,

line 14).

The metadata used in training comes from two sources: query

history and billing history. The query history includes system in-

formation (e.g., warehouse name, warehouse size, cluster number),

timeseries data (e.g., query arrival times), performance metrics

(e.g., query latency, queuing delays, bytes scanned), and so on. The

billing history includes information about the costs incurred by the

CDW, such as date, time and usage. Next, we explain how our data

learning platform uses this training data.

6.2 Memory Optimization

As mentioned in §3, usage-based CDWs allow users to suspend and

resume their warehouses as needed. However, the decision about

when to suspend and resume, in a way that achieves both high

performance and cost e�ciency, is non-trivial for most real-life

workloads. This is because (1) computing the decision’s impact can

be complex, (ii) workloads may change over time, and (iii) there can

always be ad-hoc queries that have not been observed previously.

Keebo takes a learning-based approach to solve this problem.

Tradeo�.Before describing our approach, we discuss the tradeo� in

suspending a warehouse. On the one hand, suspending a warehouse

for the next ) seconds can be bene�cial because, if no queries

arrive in that period, we can simply save warehouse costs. On the

other hand, the penalty of suspending a warehouse can be greater

than the bene�t if queries appear unexpectedly during the period
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we expected no queries to appear. This negatively impacts query

latencies because a restarted warehouse is less like to have relevant

data in its local memory. That is, we can get more bene�ts from

suspending a warehouse when the warehouse is likely to be idle.

Learning-based approach. Ultimately, we need to decide if it is

worth suspending a warehouse F right now. Let (1 − X) ) be the

chance that there will be no queries (submitted by users) for the

next ) seconds. Then, the expected cost savings from suspending

the warehouse now will be*F ×) × (1− X) ), where*F is the unit

cost of the warehouseF . The penalty of suspending a warehouse is

the slowdown experienced by the subsequent queries until the local

cache is warmed up. We use 3 (seconds) to collectively quantify the

total slowdown experienced by all such queries; then, this value is

multiplied by the unit warehouse cost*F to obtain an overall mon-

etary penalty; the values of 3 is estimated from historical telemetry

data. After all, KWO suspends a warehouse if the following holds:

*F ×) × (1 − X) ) − *F × 3 > Y

where Y is a margin of error determined based on the slider position

selected by the user (i.e., aggressiveness). ), X) , and 3 are all (peri-

odically) learned from warehouse-speci�c telemetry data discussed

in §6.1.

6.3 Deep Reinforcement Learning

At the core of KWO’s learning is a variant of deep reinforcement

learning (DRL) [19], designed to (1) decide on workload-speci�c

warehouse optimizations and (2) quickly react to unexpected changes

in the workload. In this section, we describe how we use and extend

the DRL framework for our warehouse optimization problem.

In DRL, themodel takes an action in an environment and receives

feedback in the form of the new state of the environment and its

associated reward. Based on this feedback, the model adjusts its

internal weights and decides its next action accordingly.

As shown in lines 13 to 16 of Algorithm 1, we periodically re-

train our neural network using the last 90 days of training data (D)

in a supervised manner. We also augment our training data with

the estimated impact of various actions using our warehouse cost

model (WCM). We also use the slider position of the given warehouse

(aggr) in our reward function to achieve the user’s desired balance

between cost and performance during training.

Before taking each action, the current state of the environment

in terms of real-time performance metrics is collected from the

monitoring component. The smart model takes the latest state

as feedback and uses it internally to compute a numeric reward

value for each possible action. The reward is a function of vari-

ous system parameters, such as query latencies (L), query queue

time (QueueT), and the warehouse bill (B), and is used to inform

the model’s decision-making process and improve its actions over

time. The smart model also invokes the warehouse cost model and

picks an action that maximizes the reward while satisfying user

constraints (UC).

Our reward function combines various factors, as follows:

' = 5 (!, &D4D4) , �; ,!, ,& , ,� ;U) (1)

where,; ,,@ , and,2 represent the weights assigned to L, QueueT,

and B, respectively. This reward function also has a parameter U that

determines the balance between performance and costs. Adjusting

the value of U allows the algorithm to prioritize actions that reduce

the chances of query slowdown at the expense of lower savings.

We model the warehouse optimization problem as a Markov

Decision Process (MDP) [43], and utilize a Deep Q-learning ap-

proach [27] to determine the optimal action. Our goal is learn a

strategy that maximizes the total quality of our actions. This is a

continuous learning process, whereby our model model collects

more feedback on its actions in terms of their impact on perfor-

mance and cost over time. This adaptation allows our model to

automatically adjust to dynamic workloads.

In Q-Learning, the e�ect of each action is represented using

Q-values & (B [8]), where B [8] is the state (i.e., feedback) received

in i-th iteration. The Q-value is calculated by adding the maximum

reward attainable from future states to the reward for achieving

the current state. Formally, after each action action[i] on state

B [8−1], our model learns by updating its strategy&=4F (B [8]) using:

& (B [8 − 1]) + U ['8−1 + W maxU (& (B [8], U) −& (B [8 − 1]))]

where W and U are standard terms, called the discount factor and the

learning rate, respectively. W weighs the contribution of short-term

and long-term rewards. U determines to what extent newly acquired

information overrides old information. As the model gains more

experience from optimizing the warehouse and receiving feedback,

the Q-values converge to the optimal policy [34].

7 EMPIRICAL RESULTS

In this section, we present several experiments to show:

(1) Our automated warehouse optimization can reduce warehous-

ing costs signi�cantly after a short period of time (§7.1).

(2) Our warehouse cost model yields highly accurate estimates of

actual warehouse costs (§7.2).

(3) Our optimizations incur almost no overhead (§7.3).

(4) Our DLR-based approach allows users to achieve their desired

tradeo� between cost savings and performance (§7.4).

To measure costs, we use an abstract unit of credit because the dollar

amount may di�er from one customer to another depending on

their business agreements with warehouse vendors.

7.1 Keebo O�ers Signi�cant Savings

To demonstrate the bene�ts of KWO, this section shares our empir-

ical observations with production environments processing actual

customer workloads. Speci�cally, we examine how the warehouses’

credit usage right before and after using KWO. We intentionally

choose a short period to reduce the chances of a signi�cant change

in the workload, thereby allowing us to use the pre-Keebo usage as

a fair baseline to evaluate the with-Keebo behavior.

Cost Savings. Figure 4 shows the actual credit usage for two dif-

ferent warehouses (from di�erent customers). In each sub�gure,

bars report credit usage, and a line reports daily 99th-percentile

latencies. We �rst focus on the bars to compare credit usage before

and with Keebo, which are distinguished using two di�erent colors,

blue and green, respectively. That is, in both sub�gures, Days 8–14

are the days when KWO is enabled.

Figure 4a demonstrates savings for the warehouse with less

predictable workloads; thus, its credit usage, even before KWO is



Making Data Clouds Smarter at Keebo: Automated Warehouse Optimization using Data Learning SIGMOD-Companion ’23, June 18–23, 2023, Sea�le, WA, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

5

10

15

20

Days

C
o
st
s
(c
re
d
it
s)

Before KWO usage With KWO usage p99 latency (sec; right Y-axis)

0

50

100

150

200

(a) Savings forWarehouseA (less predictable workloads)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

10

20

30

40

Days

C
o
st
s
(c
re
d
it
s)

0

2

4

6

8

10

(b) Savings forWarehouseB (more predictable workloads)

Figure 4: Keebo reduces warehouse costs with minimal impact on query performance.
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Figure 5: Our warehouse cost model o�ers highly accurate

estimates of actual costs without running any actual queries.

enabled, �uctuates more than other warehouses we observe. Nev-

ertheless, we observe that the overall credit usage becomes lower

for the period when KWO is active (i.e., green bars). Speci�cally,

the average daily usage reduces from 10.4 to 4.2 per day, meaning a

59.7% reduction. While these daily aggregates are useful for check-

ing early results, our dashboard also o�ers weekly and monthly

statistics for the users more interested in long-term behaviors.

In contrast, Figure 4b shows the warehouse data handling more

predictable workloads, being indicated by relatively constant credit

usage even before KWO (blue bars). With KWO, we observe that

daily credit usage reduces by 13.2% from 26.9 to 23.4 per day.

Performance Impact. One of KWO’s main goals is to avoid any

negative impact on performance. To trace performance impact, we

report 99th-percentile (p99) latency as the primary metric while our

dashboards report other aggregate statistics as well. In Figure 4, the

p99 latencies are depicted with lines. In these cases, we observe no

noticeable latency changes with the introduction of KWO. In Fig-

ure 4b, p99 latencies are interestingly lower with KWO than before.

Situations like this happen when KWO prefers constantly running

smaller warehouses over sporadically running bigger warehouses

in order to avoid cold cache and warehouse wake-up delays

7.2 Warehouse Cost Model is Accurate

Our warehouse cost model (§5) plays an important role for evaluat-

ing the savings KWO delivers to customers, and also for training

our reinforcement learning models (§6.3). In this section, we evalu-

ate the quality of our warehouse cost model using real-world query

workloads sampled across several di�erent warehouses.

In order to evaluate its quality, we examine how accurately our

warehouse cost model can estimate the actual costs (reported by
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Figure 6: KWO incurs marginal overhead (red) compared to

its savings (green).

CDW) without running any queries. Then, these estimated costs are

compared to the actual costs, which we obtain by actually running

those queries. This task is more challenging than, for example, esti-

mating how long it would take to completely process a set of queries

by running them one by one, because the sampled workloads con-

tain when those queries are submitted. That is, our warehouse cost

model must incorporate not only the latencies of individual queries,

but also, potential idle times between active query processing and

its impacts on dollar bills, in consideration of warehouse-speci�c

con�gurations (e.g., sizes, # of clusters, auto-suspend behaviors).

Figure 5 shows our experimental results. In the �gure, blue bars

show the actual costs we have to pay to CDW for actually running

queries; green bars show the estimated costs by our warehouse

cost model, without running any queries. Intuitively, if the heights

of those bars belonging to the same warehouse (e.g., Warehouse1)

are identical, we can say the warehouse cost model is producing

accurate estimates. For the workloads we consider, our estimates

are nearly identical to the actual charges. Speci�cally, the relative

errors are 0.67%, 4.09%, 20.9%, 3.12%, respectively. The relative error

is greater for Warehouse3 because its absolute spending is quite

low; even a small absolute di�erence makes the relative error large.

Indeed, this is observed often for low-spending warehouses because

even in production environments, there are provisioned, but rarely

used ones. However, this is not a major concern for our warehouse

cost model because such warehouses are anyway not the major

target for optimization, with less opportunity for cost savings.

7.3 Keebo Incurs Almost No Overheads

KWO constantly monitors the amount of its overhead for obtain-

ing telemetry data and performing actuator operations, because

performing these operations also incurs (small) CDW costs. Our
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internal logic merges all the related data — the telemetry data for

user queries, our overhead, and expected savings we o�er — into

one place, allowing our data scientists and automated monitoring

tools to determine the �nal value provided by our service.

Figure 6 shows one such example. This �gure shows hourly data

of (1) actual credit usage (in blue), (2) KWO overhead (in red), and

(3) estimated savings (in green). We observe several interesting

trends here. First, KWO’s overhead (in red) is negligibly small in

comparison to other regular query processing. This low overhead is

indeed the outcome of signi�cant engineering e�orts to (1) leverage

running warehouses for obtaining telemetry data (without waking

them), and (2) combine multiple queries into one to reduce the total

runtime. Compared to overhead, estimated savings is signi�cantly

greater in amount, justifying the value of KWO for this warehouse.

Second, the expected total spendwithout Keebo— the sum of Actual

and Estimated Savings — are nearly identical over di�erent hours.

This is because the particular warehouse has relatively static work-

loads over time (for performing ETL tasks); yet, our optimization

�nds cost-saving opportunities.

7.4 Keebo O�ers Intuitive Con�guration Sliders

We have designed our algorithms with the ability to strike di�erent

tradeo�s between cost savings and query performance according

to the customer’s needs. This section con�rms this behavior by

running the same query workloads with �ve di�erent con�gura-

tions (i.e., from Lowest cost to Best performance) o�ered by our

slider interface. Figure 7 shows the di�erences in warehouse costs

(blue bars) and average query latencies (green line) according to

the slider values. While this tradeo� relationship itself may not

be surprising, what is meaningful about KWO is that it is o�ering

Pareto e�ciency in managing warehouses. In other words, for achiev-

ing average latency 1.42 seconds (slider value 3), KWO optimizes

warehouse sizing and its operations so that the cost of processing a

given workload is minimized.

8 RELATED WORK

There are three categories of prior work that are closely related:

Con�guration. There is much work on tuning database con�gura-

tions, either manually by database administrators or automatically

via the use of machine learning as in OtterTune [46] and KEA [49].

Unfortunately, prior con�guration tuning approaches do not con-

sider the characteristics of the query workloads and rather tune

based on system/machine level metrics. Furthermore, the tuning is

not managed, i.e, they do not automate the end-to-end lifecycle.

Resource optimization. Recent work has explored the problem

of optimizing resources, especially for analytical data processing

systems in the cloud setting. Examples include Peregrine [25],

Sparklens [15], and Seagull [39]. These approaches apply predictive,

reactive, or adaptive techniques to �nd better resource allocation

decisions for the data processing system. Such automated decisions,

however, are not monitored or rolled back in case of performance

degradation. They are also often employed for reducing vendor’s

operating costs, and may not be passed on to the customers.

CloudWHCost Optimizations. Several modern cloud data ware-

houses provide on-demand and easier-to-manage infrastructure,

with features such as auto-scale [6, 13] and auto-suspend [5, 8].
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Figure 7: Keebo allows users to easily explore the tradeo�

between cost savings and performance, with a single slider.

However, they still need to be con�gured and evolved over time

by the users. Other recommendation-based services such as Sling-

shot [10] or Bluesky Data [9] provide suggestions on how to tune

such con�gurations with the users still responsible for applying and

monitoring them over time. It is non-trivial for users to make price-

performance trade-o�s as they need to understand their workloads

deeply and make decisions based on calculated judgment.

Reinforcement learning The past decade has seen wide adoption

of machine learning (ML) in the database community. Recently

reinforcement learning has been used across a variety of systems

components. Query optimization [26, 32, 37] applied deep reinforce-

ment learning to formulate better join ordering and eventually �nd

better plans. However, the lack of su�cient training data requires

the model to continuously update and improve its predictions as it

learns from new examples. This process of online training can be

computationally expensive and time-consuming. our DRL model

bene�ts from having access to large historical telemetry data, which

enables it to learn from a diverse range of past experiences without

the need for constant updates. Reinforcement learning techniques

have also been applied to managing elastic clusters[30, 36], adap-

tive query processing [44, 45], scheduling[31, 47], physical schema

design [38], and tuning transactional databases [46].

9 CONCLUSION

Keebo is a data learning platform that trains models based on how

users and applications interact with their data cloud, and uses those

models to automate the tedious aspects of those interactions. In

this paper, we introduced Keebo’s Warehouse Optimization, as the

�rst fully-automated solution for minimizing the cost of cloud data

warehouses, while meeting the users’ performance goals. Keebo

seamlessly plugs into customer’s existing data clouds and manages

the entire optimization life-cycle of their CDWs. It automatically

observes the workload, learns smart models, makes optimization

decisions and takes actions in real-time, monitors the performance

impact of those actions, adjusts or reverts its optimizations in case

of an adverse impact, and estimates the overall savings brought to

the customer as a result of those optimizations.

Keebo’s models constantly learn and improve over time. Cus-

tomers observe 20%–70% reduction in their CDW bill, and do so

quickly: on average, they reach 50%, 70%, and 95% of their eventual

savings after only 20, 43, and 83 hours of using Keebo.
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